Jaumann rate of the Cauchy stress Objective stress rate
the jaumann rate used in computations 2 reasons
recall spin tensor
w
{\displaystyle {\boldsymbol {w}}}
(the skew part of velocity gradient) can expressed as
w
=
r
˙
⋅
r
t
+
1
2
r
⋅
(
u
˙
⋅
u
−
1
−
u
−
1
⋅
u
˙
)
⋅
r
t
{\displaystyle {\boldsymbol {w}}={\dot {\boldsymbol {r}}}\cdot {\boldsymbol {r}}^{t}+{\frac {1}{2}}~{\boldsymbol {r}}\cdot ({\dot {\boldsymbol {u}}}\cdot {\boldsymbol {u}}^{-1}-{\boldsymbol {u}}^{-1}\cdot {\dot {\boldsymbol {u}}})\cdot {\boldsymbol {r}}^{t}}
thus pure rigid body motion
w
=
r
˙
⋅
r
t
=
Ω
{\displaystyle {\boldsymbol {w}}={\dot {\boldsymbol {r}}}\cdot {\boldsymbol {r}}^{t}={\boldsymbol {\omega }}}
alternatively, can consider case of proportional loading when principal directions of strain remain constant. example of situation axial loading of cylindrical bar. in situation, since
u
=
[
λ
x
λ
y
λ
z
]
{\displaystyle {\boldsymbol {u}}=\left[{\begin{array}{ccc}\lambda _{x}\\&\lambda _{y}\\&&\lambda _{z}\end{array}}\right]}
we have
u
˙
=
[
λ
˙
x
λ
˙
y
λ
˙
z
]
{\displaystyle {\dot {\boldsymbol {u}}}=\left[{\begin{array}{ccc}{\dot {\lambda }}_{x}\\&{\dot {\lambda }}_{y}\\&&{\dot {\lambda }}_{z}\end{array}}\right]}
also,
u
−
1
=
[
1
/
λ
x
1
/
λ
y
1
/
λ
z
]
{\displaystyle {\boldsymbol {u}}^{-1}=\left[{\begin{array}{ccc}1/\lambda _{x}\\&1/\lambda _{y}\\&&1/\lambda _{z}\end{array}}\right]}
of cauchy stress
therefore,
u
˙
⋅
u
−
1
=
[
λ
˙
x
/
λ
x
λ
˙
y
/
λ
y
λ
˙
z
/
λ
z
]
=
u
−
1
u
˙
{\displaystyle {\dot {\boldsymbol {u}}}\cdot {\boldsymbol {u}}^{-1}=\left[{\begin{array}{ccc}{\dot {\lambda }}_{x}/\lambda _{x}\\&{\dot {\lambda }}_{y}/\lambda _{y}\\&&{\dot {\lambda }}_{z}/\lambda _{z}\end{array}}\right]=u^{-1}{\dot {u}}}
this once again gives
w
=
r
˙
⋅
r
t
=
Ω
{\displaystyle {\boldsymbol {w}}={\dot {\boldsymbol {r}}}\cdot {\boldsymbol {r}}^{t}={\boldsymbol {\omega }}}
in general, if approximate
w
≈
r
˙
⋅
r
t
{\displaystyle {\boldsymbol {w}}\approx {\dot {\boldsymbol {r}}}\cdot {\boldsymbol {r}}^{t}}
the green–naghdi rate becomes jaumann rate of cauchy stress
σ
△
=
σ
˙
+
σ
⋅
w
−
w
⋅
σ
{\displaystyle {\overset {\triangle }{\boldsymbol {\sigma }}}={\dot {\boldsymbol {\sigma }}}+{\boldsymbol {\sigma }}\cdot {\boldsymbol {w}}-{\boldsymbol {w}}\cdot {\boldsymbol {\sigma }}}
Comments
Post a Comment