Jaumann rate of the Cauchy stress Objective stress rate







the jaumann rate used in computations 2 reasons



recall spin tensor




w



{\displaystyle {\boldsymbol {w}}}

(the skew part of velocity gradient) can expressed as








w

=



r
˙






r


t


+


1
2


 

r


(



u
˙






u



1





u



1






u
˙



)



r


t




{\displaystyle {\boldsymbol {w}}={\dot {\boldsymbol {r}}}\cdot {\boldsymbol {r}}^{t}+{\frac {1}{2}}~{\boldsymbol {r}}\cdot ({\dot {\boldsymbol {u}}}\cdot {\boldsymbol {u}}^{-1}-{\boldsymbol {u}}^{-1}\cdot {\dot {\boldsymbol {u}}})\cdot {\boldsymbol {r}}^{t}}



thus pure rigid body motion








w

=



r
˙






r


t


=

Ω



{\displaystyle {\boldsymbol {w}}={\dot {\boldsymbol {r}}}\cdot {\boldsymbol {r}}^{t}={\boldsymbol {\omega }}}



alternatively, can consider case of proportional loading when principal directions of strain remain constant. example of situation axial loading of cylindrical bar. in situation, since








u

=

[





λ

x








λ

y









λ

z






]



{\displaystyle {\boldsymbol {u}}=\left[{\begin{array}{ccc}\lambda _{x}\\&\lambda _{y}\\&&\lambda _{z}\end{array}}\right]}



we have










u
˙



=

[








λ
˙




x











λ
˙




y












λ
˙




z






]



{\displaystyle {\dot {\boldsymbol {u}}}=\left[{\begin{array}{ccc}{\dot {\lambda }}_{x}\\&{\dot {\lambda }}_{y}\\&&{\dot {\lambda }}_{z}\end{array}}\right]}



also,









u



1


=

[




1

/


λ

x







1

/


λ

y








1

/


λ

z






]



{\displaystyle {\boldsymbol {u}}^{-1}=\left[{\begin{array}{ccc}1/\lambda _{x}\\&1/\lambda _{y}\\&&1/\lambda _{z}\end{array}}\right]}

of cauchy stress

therefore,










u
˙






u



1


=

[








λ
˙




x



/


λ

x











λ
˙




y



/


λ

y












λ
˙




z



/


λ

z






]

=

u


1





u
˙





{\displaystyle {\dot {\boldsymbol {u}}}\cdot {\boldsymbol {u}}^{-1}=\left[{\begin{array}{ccc}{\dot {\lambda }}_{x}/\lambda _{x}\\&{\dot {\lambda }}_{y}/\lambda _{y}\\&&{\dot {\lambda }}_{z}/\lambda _{z}\end{array}}\right]=u^{-1}{\dot {u}}}



this once again gives








w

=



r
˙






r


t


=

Ω



{\displaystyle {\boldsymbol {w}}={\dot {\boldsymbol {r}}}\cdot {\boldsymbol {r}}^{t}={\boldsymbol {\omega }}}



in general, if approximate








w





r
˙






r


t




{\displaystyle {\boldsymbol {w}}\approx {\dot {\boldsymbol {r}}}\cdot {\boldsymbol {r}}^{t}}



the green–naghdi rate becomes jaumann rate of cauchy stress









σ



=



σ
˙



+

σ



w



w



σ



{\displaystyle {\overset {\triangle }{\boldsymbol {\sigma }}}={\dot {\boldsymbol {\sigma }}}+{\boldsymbol {\sigma }}\cdot {\boldsymbol {w}}-{\boldsymbol {w}}\cdot {\boldsymbol {\sigma }}}








Comments

Popular posts from this blog

Early forms Nasal helmet

History Fixed exchange-rate system

Early years .281995.E2.80.931999.29 History of D.C. United