Theorems Matrix variate beta distribution
1 theorems
1.1 distribution of matrix inverse
1.2 orthogonal transform
1.3 partitioned matrix results
1.4 wishart results
theorems
distribution of matrix inverse
if
u
∼
b
p
(
a
,
b
)
{\displaystyle u\sim b_{p}(a,b)}
density of
x
=
u
−
1
{\displaystyle x=u^{-1}}
given by
1
β
p
(
a
,
b
)
det
(
x
)
−
(
a
+
b
)
det
(
x
−
i
p
)
b
−
(
p
+
1
)
/
2
{\displaystyle {\frac {1}{\beta _{p}\left(a,b\right)}}\det(x)^{-(a+b)}\det \left(x-i_{p}\right)^{b-(p+1)/2}}
provided
x
>
i
p
{\displaystyle x>i_{p}}
,
a
,
b
>
(
p
−
1
)
/
2
{\displaystyle a,b>(p-1)/2}
.
orthogonal transform
if
u
∼
b
p
(
a
,
b
)
{\displaystyle u\sim b_{p}(a,b)}
,
h
{\displaystyle h}
constant
p
×
p
{\displaystyle p\times p}
orthogonal matrix,
h
u
h
t
∼
b
(
a
,
b
)
.
{\displaystyle huh^{t}\sim b(a,b).}
also, if
h
{\displaystyle h}
random orthogonal
p
×
p
{\displaystyle p\times p}
matrix independent of
u
{\displaystyle u}
,
h
u
h
t
∼
b
p
(
a
,
b
)
{\displaystyle huh^{t}\sim b_{p}(a,b)}
, distributed independently of
h
{\displaystyle h}
.
if
a
{\displaystyle a}
constant
q
×
p
{\displaystyle q\times p}
,
q
≤
p
{\displaystyle q\leq p}
matrix of rank
q
{\displaystyle q}
,
a
u
a
t
{\displaystyle aua^{t}}
has generalized matrix variate beta distribution,
a
u
a
t
∼
g
b
q
(
a
,
b
;
a
a
t
,
0
)
{\displaystyle aua^{t}\sim gb_{q}\left(a,b;aa^{t},0\right)}
.
partitioned matrix results
if
u
∼
b
p
(
a
,
b
)
{\displaystyle u\sim b_{p}\left(a,b\right)}
, partition
u
{\displaystyle u}
as
u
=
[
u
11
u
12
u
21
u
22
]
{\displaystyle u={\begin{bmatrix}u_{11}&u_{12}\\u_{21}&u_{22}\end{bmatrix}}}
where
u
11
{\displaystyle u_{11}}
p
1
×
p
1
{\displaystyle p_{1}\times p_{1}}
,
u
22
{\displaystyle u_{22}}
p
2
×
p
2
{\displaystyle p_{2}\times p_{2}}
, defining schur complement
u
22
⋅
1
{\displaystyle u_{22\cdot 1}}
u
22
−
u
21
u
11
−
1
u
12
{\displaystyle u_{22}-u_{21}{u_{11}}^{-1}u_{12}}
gives following results:
u
11
{\displaystyle u_{11}}
independent of
u
22
⋅
1
{\displaystyle u_{22\cdot 1}}
u
11
∼
b
p
1
(
a
,
b
)
{\displaystyle u_{11}\sim b_{p_{1}}\left(a,b\right)}
u
22
⋅
1
∼
b
p
2
(
a
−
p
1
/
2
,
b
)
{\displaystyle u_{22\cdot 1}\sim b_{p_{2}}\left(a-p_{1}/2,b\right)}
u
21
∣
u
11
,
u
22
⋅
1
{\displaystyle u_{21}\mid u_{11},u_{22\cdot 1}}
has inverted matrix variate t distribution,
u
21
∣
u
11
,
u
22
⋅
1
∼
i
t
p
2
,
p
1
(
2
b
−
p
+
1
,
0
,
i
p
2
−
u
22
⋅
1
,
u
11
(
i
p
1
−
u
11
)
)
.
{\displaystyle u_{21}\mid u_{11},u_{22\cdot 1}\sim it_{p_{2},p_{1}}\left(2b-p+1,0,i_{p_{2}}-u_{22\cdot 1},u_{11}(i_{p_{1}}-u_{11})\right).}
wishart results
mitra proves following theorem illustrates useful property of matrix variate beta distribution. suppose
s
1
,
s
2
{\displaystyle s_{1},s_{2}}
independent wishart
p
×
p
{\displaystyle p\times p}
matrices
s
1
∼
w
p
(
n
1
,
Σ
)
,
s
2
∼
w
p
(
n
2
,
Σ
)
{\displaystyle s_{1}\sim w_{p}(n_{1},\sigma ),s_{2}\sim w_{p}(n_{2},\sigma )}
. assume
Σ
{\displaystyle \sigma }
positive definite ,
n
1
+
n
2
≥
p
{\displaystyle n_{1}+n_{2}\geq p}
. if
u
=
s
−
1
/
2
s
1
(
s
−
1
/
2
)
t
,
{\displaystyle u=s^{-1/2}s_{1}\left(s^{-1/2}\right)^{t},}
where
s
=
s
1
+
s
2
{\displaystyle s=s_{1}+s_{2}}
,
u
{\displaystyle u}
has matrix variate beta distribution
b
p
(
n
1
/
2
,
n
2
/
2
)
{\displaystyle b_{p}(n_{1}/2,n_{2}/2)}
. in particular,
u
{\displaystyle u}
independent of
Σ
{\displaystyle \sigma }
.
Comments
Post a Comment