Lifetime analysis: Survival analysis and reliability Monotone likelihood ratio
1 lifetime analysis: survival analysis , reliability
1.1 proofs
1.2 first-order stochastic dominance
1.3 monotone hazard rate
lifetime analysis: survival analysis , reliability
if family of distributions
f
θ
(
x
)
{\displaystyle f_{\theta }(x)}
has monotone likelihood ratio property in
t
(
x
)
{\displaystyle t(x)}
,
but not conversely: neither monotone hazard rates nor stochastic dominance imply mlrp.
proofs
let distribution family
f
θ
{\displaystyle f_{\theta }}
satisfy mlr in x,
θ
1
>
θ
0
{\displaystyle \theta _{1}>\theta _{0}}
,
x
1
>
x
0
{\displaystyle x_{1}>x_{0}}
:
f
θ
1
(
x
1
)
f
θ
0
(
x
1
)
≥
f
θ
1
(
x
0
)
f
θ
0
(
x
0
)
,
{\displaystyle {\frac {f_{\theta _{1}}(x_{1})}{f_{\theta _{0}}(x_{1})}}\geq {\frac {f_{\theta _{1}}(x_{0})}{f_{\theta _{0}}(x_{0})}},}
or equivalently:
f
θ
1
(
x
1
)
f
θ
0
(
x
0
)
≥
f
θ
1
(
x
0
)
f
θ
0
(
x
1
)
.
{\displaystyle f_{\theta _{1}}(x_{1})f_{\theta _{0}}(x_{0})\geq f_{\theta _{1}}(x_{0})f_{\theta _{0}}(x_{1}).\,}
integrating expression twice, obtain:
first-order stochastic dominance
combine 2 inequalities above first-order dominance:
f
θ
1
(
x
)
≤
f
θ
0
(
x
)
∀
x
{\displaystyle f_{\theta _{1}}(x)\leq f_{\theta _{0}}(x)\ \forall x}
monotone hazard rate
use second inequality above monotone hazard rate:
f
θ
1
(
x
)
1
−
f
θ
1
(
x
)
≤
f
θ
0
(
x
)
1
−
f
θ
0
(
x
)
∀
x
{\displaystyle {\frac {f_{\theta _{1}}(x)}{1-f_{\theta _{1}}(x)}}\leq {\frac {f_{\theta _{0}}(x)}{1-f_{\theta _{0}}(x)}}\ \forall x}
Comments
Post a Comment